Характеристика углерода. Свойства простых веществ и соединений

атом углерода орбитали строениеУглерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа.

Атом углерода имеет 6 электронов: 1s22s22p2. Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2рх, а другой, либо 2ру, либо 2рz-орбитали.

атом углерода основное и возбужденное сотояниеРазличие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s22s12px12py12pz1. Именно такое состояние атома углерода характерно для решетки алмаза – тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp3-гибридизацией, а возникающие функции – sp3-гибридными.  Образование четырех sp3-cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р—р- и одна s—s-связи. Помимо sp3-гибридизации у атома углерода наблюдается также sp2– и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp2– гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp2.

гибридизация атома углерода

При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

графит алмаз аллотрорпия

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp2-гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества.

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

–    с кислородом
C0 + O2  –=  CO2 углекислый газ
при недостатке кислорода – неполное сгорание:
2C0 + O2  –= 2C+2O угарный газ

–     со фтором
С + 2F2 = CF4

–    с водяным паром
C0 + H2O  –1200°= С+2O + H2 водяной газ

–  с оксидами металлов. Таким образом выплавляют металл из руды.
C0 + 2CuO  –=  2Cu + C+4O2

–  с кислотами – окислителями:
C0 + 2H2SO4(конц.) = С+4O2­ + 2SO2­ + 2H2O
С0 + 4HNO3(конц.) = С+4O2­ + 4NO2­ + 2H2O

–  с серой образует сероуглерод:
С + 2S2 = СS2.

  Углерод как окислитель:

–    с некоторыми металлами образует карбиды

4Al + 3C0 = Al4C3

Ca + 2C0 = CaC2-4

–     с водородом – метан (а также огромное количество органических соединений)

C0 + 2H2 = CH4

– с кремнием, образует карборунд (при 2000 °C в электропечи):

Si + C = SiC.

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО3, доломита – MgCO3*CaCO3; гидрокарбонатов – Mg(НCO3)2 и Са(НCO3)2, СО2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

углерод, химические свойства, аллотропия, СО, СО2

Неорганические соединения углерода

Ни ионы С4+ , ни С4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II)  СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1)     В промышленности (в газогенераторах):
C + O2 = CO2

CO2 + C = 2CO

2)     В лаборатории – термическим разложением муравьиной или щавелевой кислоты в присутствии H2SO4(конц.):
HCOOH = H2O + CO­

H2C2O4 = CO­ + CO2­ + H2O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1)     с кислородом

2C+2O + O2 = 2C+4O2

2)     с оксидами металлов

C+2O + CuO = Сu + C+4O2

3)     с хлором (на свету)

CO + Cl2  –hn=  COCl2(фосген)

4)     реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5)     с переходными металлами образует карбонилы

Ni + 4CO  –= Ni(CO)4

Fe + 5CO  –= Fe(CO)5

Оксид углерода (IV) СO2

Углекислый газ, бесцветный, без запаха, растворимость в воде – в 1V H2O растворяется 0,9V CO2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO2 называется “сухой лёд”); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO3  –=  CaO + CO2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO3 + 2HCl = CaCl2 + H2O + CO2­

NaHCO3 + HCl = NaCl + H2O + CO2­

Химические свойства СO2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na2O + CO2 = Na2CO3

2NaOH + CO2 = Na2CO3 + H2O

NaOH + CO2 = NaHCO3

При повышенной температуре может проявлять окислительные свойства

С+4O2 + 2Mg  –=  2Mg+2O + C0

Качественная реакция

Помутнение известковой воды:

Ca(OH)2 + CO= CaCO3¯(белый осадок) + H2O

Оно исчезает при длительном пропускании CO2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO3 + H2O + CO2 = Сa(HCO3)2

Угольная кислота и её соли

H2CO3 Кислота слабая, существует только в водном растворе:

CO2 + H2O ↔ H2CO3

Двухосновная:
H2CO3 ↔ H+ + HCO3Кислые соли – бикарбонаты, гидрокарбонаты
HCO3 ↔ H+ + CO32-    Cредние соли – карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO3  –=  Na2CO3 + H2O + CO2­

Na2CO3 + H2O + CO2 = 2NaHCO3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO3  –=  CuO + CO2­

Качественная реакция – “вскипание” при действии сильной кислоты:

Na2CO3 + 2HCl = 2NaCl + H2O + CO2­

CO32- + 2H+ = H2O + CO2­

Карбиды

Карбид кальция:

CaO + 3 C = CaC2 + CO

CaC2 + 2 H2O = Ca(OH)2 + C2H2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC2 + 6 H2O = 2La(OH)3 + 2 C2H2 + H2.

Be2C и Al4C3 разлагаются водой с образованием метана:

Al4C3 + 12 H2O = 4 Al(OH)3 = 3 CH4.

В технике применяют карбиды титана TiC, вольфрама W2C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na2CO3 + 2 NH3 + 3 CO = 2 NaCN + 2 H2O + H2 + 2 CO2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C=O: [:C=N:]

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H2O + 0,5 O2 = 2 K[Au(CN)2] + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды:
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан:  Hg(CN)2 = Hg + (CN)2. Растворы цианидов окисляются до цианатов:

2 KCN + O2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C=N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH4OCN = CO(NH2)2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над “виталистической теорией”.

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC)2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO2 + 2 NH3 = CO(NH2)2 + H2O.  При 1300С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее “азотный аналог” – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H2CO3 – слабая кислота (К1 =1,3·10-4; К2 =5·10-11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H2CO3 ↔ H+ + HCO3 .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO2 + H2O ↔ H2CO3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H+ + CO32-↔  HCO3

CaCO3(тв.) ↔  Ca2+ + CO32-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует “парниковому эффекту” – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na2CO3) используется в производстве стекла.


Комментарии:

   
© 2013 HimEge.ru
Copy Protected by Chetan's WP-Copyprotect.
www.megastock.ru https://passport.webmoney.ru/asp/CertView.asp?wmid=288124375050
Проверить аттестат
Ваши вопросы, предложения и пожелания отправляйте на info@HimEge.ru